\(\int \frac {(1-2 x)^{5/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx\) [2430]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 115 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\frac {74}{45} \sqrt {1-2 x} \sqrt {3+5 x}+\frac {7 (1-2 x)^{3/2} \sqrt {3+5 x}}{3 (2+3 x)}+\frac {346}{135} \sqrt {\frac {2}{5}} \arcsin \left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )-\frac {175}{27} \sqrt {7} \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right ) \]

[Out]

346/675*arcsin(1/11*22^(1/2)*(3+5*x)^(1/2))*10^(1/2)-175/27*arctan(1/7*(1-2*x)^(1/2)*7^(1/2)/(3+5*x)^(1/2))*7^
(1/2)+7/3*(1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)+74/45*(1-2*x)^(1/2)*(3+5*x)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {100, 159, 163, 56, 222, 95, 210} \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\frac {346}{135} \sqrt {\frac {2}{5}} \arcsin \left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )-\frac {175}{27} \sqrt {7} \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )+\frac {7 \sqrt {5 x+3} (1-2 x)^{3/2}}{3 (3 x+2)}+\frac {74}{45} \sqrt {5 x+3} \sqrt {1-2 x} \]

[In]

Int[(1 - 2*x)^(5/2)/((2 + 3*x)^2*Sqrt[3 + 5*x]),x]

[Out]

(74*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/45 + (7*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(3*(2 + 3*x)) + (346*Sqrt[2/5]*ArcSin[
Sqrt[2/11]*Sqrt[3 + 5*x]])/135 - (175*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/27

Rule 56

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c -
a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 159

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps \begin{align*} \text {integral}& = \frac {7 (1-2 x)^{3/2} \sqrt {3+5 x}}{3 (2+3 x)}+\frac {1}{3} \int \frac {\sqrt {1-2 x} \left (\frac {157}{2}+74 x\right )}{(2+3 x) \sqrt {3+5 x}} \, dx \\ & = \frac {74}{45} \sqrt {1-2 x} \sqrt {3+5 x}+\frac {7 (1-2 x)^{3/2} \sqrt {3+5 x}}{3 (2+3 x)}+\frac {1}{45} \int \frac {\frac {2503}{2}+346 x}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx \\ & = \frac {74}{45} \sqrt {1-2 x} \sqrt {3+5 x}+\frac {7 (1-2 x)^{3/2} \sqrt {3+5 x}}{3 (2+3 x)}+\frac {346}{135} \int \frac {1}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx+\frac {1225}{54} \int \frac {1}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx \\ & = \frac {74}{45} \sqrt {1-2 x} \sqrt {3+5 x}+\frac {7 (1-2 x)^{3/2} \sqrt {3+5 x}}{3 (2+3 x)}+\frac {1225}{27} \text {Subst}\left (\int \frac {1}{-7-x^2} \, dx,x,\frac {\sqrt {1-2 x}}{\sqrt {3+5 x}}\right )+\frac {692 \text {Subst}\left (\int \frac {1}{\sqrt {11-2 x^2}} \, dx,x,\sqrt {3+5 x}\right )}{135 \sqrt {5}} \\ & = \frac {74}{45} \sqrt {1-2 x} \sqrt {3+5 x}+\frac {7 (1-2 x)^{3/2} \sqrt {3+5 x}}{3 (2+3 x)}+\frac {346}{135} \sqrt {\frac {2}{5}} \sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )-\frac {175}{27} \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.36 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.90 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\frac {1}{675} \left (\frac {15 \sqrt {1-2 x} \left (759+1301 x+60 x^2\right )}{(2+3 x) \sqrt {3+5 x}}-346 \sqrt {10} \arctan \left (\frac {\sqrt {\frac {5}{2}-5 x}}{\sqrt {3+5 x}}\right )-4375 \sqrt {7} \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )\right ) \]

[In]

Integrate[(1 - 2*x)^(5/2)/((2 + 3*x)^2*Sqrt[3 + 5*x]),x]

[Out]

((15*Sqrt[1 - 2*x]*(759 + 1301*x + 60*x^2))/((2 + 3*x)*Sqrt[3 + 5*x]) - 346*Sqrt[10]*ArcTan[Sqrt[5/2 - 5*x]/Sq
rt[3 + 5*x]] - 4375*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/675

Maple [A] (verified)

Time = 1.19 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.16

method result size
risch \(-\frac {\left (-1+2 x \right ) \sqrt {3+5 x}\, \left (253+12 x \right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{45 \left (2+3 x \right ) \sqrt {-\left (-1+2 x \right ) \left (3+5 x \right )}\, \sqrt {1-2 x}}-\frac {\left (-\frac {173 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right )}{675}-\frac {175 \sqrt {7}\, \arctan \left (\frac {9 \left (\frac {20}{3}+\frac {37 x}{3}\right ) \sqrt {7}}{14 \sqrt {-90 \left (\frac {2}{3}+x \right )^{2}+67+111 x}}\right )}{54}\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{\sqrt {1-2 x}\, \sqrt {3+5 x}}\) \(133\)
default \(\frac {\sqrt {1-2 x}\, \sqrt {3+5 x}\, \left (1038 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right ) x +13125 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x +692 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right )+8750 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+360 x \sqrt {-10 x^{2}-x +3}+7590 \sqrt {-10 x^{2}-x +3}\right )}{1350 \sqrt {-10 x^{2}-x +3}\, \left (2+3 x \right )}\) \(146\)

[In]

int((1-2*x)^(5/2)/(2+3*x)^2/(3+5*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/45*(-1+2*x)*(3+5*x)^(1/2)*(253+12*x)/(2+3*x)/(-(-1+2*x)*(3+5*x))^(1/2)*((1-2*x)*(3+5*x))^(1/2)/(1-2*x)^(1/2
)-(-173/675*10^(1/2)*arcsin(20/11*x+1/11)-175/54*7^(1/2)*arctan(9/14*(20/3+37/3*x)*7^(1/2)/(-90*(2/3+x)^2+67+1
11*x)^(1/2)))*((1-2*x)*(3+5*x))^(1/2)/(1-2*x)^(1/2)/(3+5*x)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.10 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=-\frac {346 \, \sqrt {5} \sqrt {2} {\left (3 \, x + 2\right )} \arctan \left (\frac {\sqrt {5} \sqrt {2} {\left (20 \, x + 1\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{20 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) + 4375 \, \sqrt {7} {\left (3 \, x + 2\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 30 \, {\left (12 \, x + 253\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{1350 \, {\left (3 \, x + 2\right )}} \]

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^2/(3+5*x)^(1/2),x, algorithm="fricas")

[Out]

-1/1350*(346*sqrt(5)*sqrt(2)*(3*x + 2)*arctan(1/20*sqrt(5)*sqrt(2)*(20*x + 1)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10
*x^2 + x - 3)) + 4375*sqrt(7)*(3*x + 2)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 +
 x - 3)) - 30*(12*x + 253)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(3*x + 2)

Sympy [F]

\[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\int \frac {\left (1 - 2 x\right )^{\frac {5}{2}}}{\left (3 x + 2\right )^{2} \sqrt {5 x + 3}}\, dx \]

[In]

integrate((1-2*x)**(5/2)/(2+3*x)**2/(3+5*x)**(1/2),x)

[Out]

Integral((1 - 2*x)**(5/2)/((3*x + 2)**2*sqrt(5*x + 3)), x)

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.65 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\frac {173}{675} \, \sqrt {10} \arcsin \left (\frac {20}{11} \, x + \frac {1}{11}\right ) + \frac {175}{54} \, \sqrt {7} \arcsin \left (\frac {37 \, x}{11 \, {\left | 3 \, x + 2 \right |}} + \frac {20}{11 \, {\left | 3 \, x + 2 \right |}}\right ) + \frac {4}{45} \, \sqrt {-10 \, x^{2} - x + 3} + \frac {49 \, \sqrt {-10 \, x^{2} - x + 3}}{9 \, {\left (3 \, x + 2\right )}} \]

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^2/(3+5*x)^(1/2),x, algorithm="maxima")

[Out]

173/675*sqrt(10)*arcsin(20/11*x + 1/11) + 175/54*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 4
/45*sqrt(-10*x^2 - x + 3) + 49/9*sqrt(-10*x^2 - x + 3)/(3*x + 2)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 279 vs. \(2 (83) = 166\).

Time = 0.39 (sec) , antiderivative size = 279, normalized size of antiderivative = 2.43 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\frac {35}{108} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} + \frac {173}{675} \, \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{4 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} + \frac {4}{225} \, \sqrt {5} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} + \frac {1078 \, \sqrt {10} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}}{9 \, {\left ({\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280\right )}} \]

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^2/(3+5*x)^(1/2),x, algorithm="giac")

[Out]

35/108*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^2/
(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 173/675*sqrt(10)*(pi + 2*arctan(-1/4*sqrt(5*x + 3)*((s
qrt(2)*sqrt(-10*x + 5) - sqrt(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 4/225*sqrt(5)*sqr
t(5*x + 3)*sqrt(-10*x + 5) + 1078/9*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x
+ 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x +
 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)

Mupad [F(-1)]

Timed out. \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\int \frac {{\left (1-2\,x\right )}^{5/2}}{{\left (3\,x+2\right )}^2\,\sqrt {5\,x+3}} \,d x \]

[In]

int((1 - 2*x)^(5/2)/((3*x + 2)^2*(5*x + 3)^(1/2)),x)

[Out]

int((1 - 2*x)^(5/2)/((3*x + 2)^2*(5*x + 3)^(1/2)), x)